Per lungo tempo una delle più note mancanze di PostgreSQL è stata la possibilità di parallelizzare le query. Con l’uscita della versione 9.6 non sarà più così. È stato infatti svolto un grande lavoro sul tema, per il quale il primo risultato è stato il commit 80558c1, in cui viene introdotta la parallelizzazione dei sequential scan in alcuni casi che vedremo nel corso di questo articolo.
Innanzitutto, una premessa: lo sviluppo di questa feature è stato continuo e alcuni parametri hanno cambiato nome nel susseguirsi di commit. L’articolo è stato scritto con un checkout al 17 giugno, e presenta alcune caratteristiche che saranno presenti solo dalla beta2 della 9.6.
Rispetto alla major 9.5 sono stati introdotti nuovi parametri all’interno della configurazione. Questi sono:
Vediamo come i worker aggiuntivi possono essere usati per velocizzare le nostre query. Creiamo una tabella di test con un campo INT e cento milioni di record:
postgres=# CREATE TABLE test (i int);
CREATE TABLE
postgres=# INSERT INTO test SELECT generate_series(1,100000000);
INSERT 0 100000000
postgres=# ANALYSE test;
ANALYZE
Di default PostgreSQL ha max_parallel_workers_per_gather
impostato a 2, per cui verranno attivati due worker durante un sequential scan.
Un semplice sequential scan non presenta novità alcuna:
postgres=# EXPLAIN ANALYSE SELECT * FROM test;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Seq Scan on test (cost=0.00..1442478.32 rows=100000032 width=4) (actual time=0.081..21051.918 rows=100000000 loops=1)
Planning time: 0.077 ms
Execution time: 28055.993 ms
(3 rows)
È infatti richiesta la presenza di una clausola WHERE
per la parallelizzazione:
postgres=# EXPLAIN ANALYZE SELECT * FROM test WHERE i=1;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Gather (cost=1000.00..964311.60 rows=1 width=4) (actual time=3.381..9799.942 rows=1 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Parallel Seq Scan on test (cost=0.00..963311.50 rows=0 width=4) (actual time=6525.595..9791.066 rows=0 loops=3)
Filter: (i = 1)
Rows Removed by Filter: 33333333
Planning time: 0.130 ms
Execution time: 9804.484 ms
(8 rows)
Possiamo tornare al comportamento precedente e osservarne le differenze impostando max_parallel_workers_per_gather
a 0:
postgres=# SET max_parallel_workers_per_gather TO 0;
SET
postgres=# EXPLAIN ANALYZE SELECT * FROM test WHERE i=1;
QUERY PLAN
--------------------------------------------------------------------------------------------------------
Seq Scan on test (cost=0.00..1692478.40 rows=1 width=4) (actual time=0.123..25003.221 rows=1 loops=1)
Filter: (i = 1)
Rows Removed by Filter: 99999999
Planning time: 0.105 ms
Execution time: 25003.263 ms
(5 rows)
Un tempo 2.5 volte maggiore.
Non sempre il planner considera un sequential scan parallelo la migliore opzione. Se la query non è abbastanza selettiva e ci sono molte tuple da trasferire, è possibile che sia preferito un sequential scan "classico":
postgres=# SET max_parallel_workers_per_gather TO 2;
SET
postgres=# EXPLAIN ANALYZE SELECT * FROM test WHERE i<90000000;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------
Seq Scan on test (cost=0.00..1692478.40 rows=90116088 width=4) (actual time=0.073..31410.276 rows=89999999 loops=1)
Filter: (i < 90000000)
Rows Removed by Filter: 10000001
Planning time: 0.133 ms
Execution time: 37939.401 ms
(5 rows)
Infatti, se proviamo a forzare un sequential scan parallelo, otteniamo un risultato peggiore:
postgres=# SET parallel_tuple_cost TO 0;
SET
postgres=# EXPLAIN ANALYZE SELECT * FROM test WHERE i<90000000;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------
Gather (cost=1000.00..964311.50 rows=90116088 width=4) (actual time=0.454..75546.078 rows=89999999 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Parallel Seq Scan on test (cost=0.00..1338795.20 rows=37548370 width=4) (actual time=0.088..20294.670 rows=30000000 loops=3)
Filter: (i < 90000000)
Rows Removed by Filter: 3333334
Planning time: 0.128 ms
Execution time: 83423.577 ms
(8 rows)
Possiamo incrementare il numero di worker fino a raggiungere max_worker_processes
(default: 8). Ripristiniamo il valore di parallel_tuple_cost
vediamo quello che accade aumentando max_parallel_workers_per_gather
a 8.
postgres=# SET parallel_tuple_cost TO DEFAULT ;
SET
postgres=# SET max_parallel_workers_per_gather TO 8;
SET
postgres=# EXPLAIN ANALYZE SELECT * FROM test WHERE i=1;
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------
Gather (cost=1000.00..651811.50 rows=1 width=4) (actual time=3.684..8248.307 rows=1 loops=1)
Workers Planned: 6
Workers Launched: 6
-> Parallel Seq Scan on test (cost=0.00..650811.40 rows=0 width=4) (actual time=7053.761..8231.174 rows=0 loops=7)
Filter: (i = 1)
Rows Removed by Filter: 14285714
Planning time: 0.124 ms
Execution time: 8250.461 ms
(8 rows)
Nonostante PostgreSQL potesse usare fino a 8 worker, ne ha instanziati solo 6. Questo perché Postgres ottimizza il numero di worker anche in base alle dimensioni della tabella e al parametro min_parallel_relation_size
. Il numero dei worker messi a disposizione da postgres si basa su una successione geometrica di ragione 3 il cui primo termine è min_parallel_relation_size
. Facciamo un esempio. Considerando gli 8MB del default del parametro:
Dimensione | Worker |
---|---|
<8MB | 0 |
<24MB | 1 |
<72MB | 2 |
<216MB | 3 |
<648MB | 4 |
<1944MB | 5 |
<5822MB | 6 |
… | … |
Possiamo vedere che, essendo la nostra tabella 3458MB, 6 è il massimo numero di worker disponibili.
postgres=# \dt+ test
List of relations
Schema | Name | Type | Owner | Size | Description
--------+------+-------+----------+---------+-------------
public | test | table | postgres | 3458 MB |
(1 row)
Per concludere, una breve dimostrazione dei miglioramenti ottenuti da attraverso questa patch. Lanciando la nostra query abilitando un numero crescente di worker, otteniamo i seguenti risultati:
Worker | Tempo |
---|---|
0 | 24767.848 ms |
1 | 14855.961 ms |
2 | 10415.661 ms |
3 | 8041.187 ms |
4 | 8090.855 ms |
5 | 8082.937 ms |
6 | 8061.939 ms |
Possiamo vedere che i tempi migliorano notevolmente, fino ad arrivare ad un terzo del valore iniziale. È semplice da spiegare anche il fatto che non ci siano miglioramenti fra l’uso di tre e 6 worker: la macchina su cui è stato eseguito il test ha 4 cpu disponibili, per cui dopo 3 worker più il processo originale i risultati si stabilizzano.
Per concludere, con la 9.6 PostgreSQL ha posto le basi per la parallelizzazione delle query, di cui il sequential scan parallelo è solo il primo, ottimo, risultato. Vedremo infatti come sempre nella 9.6 siano state parallelizzate anche le aggregazioni, ma questo è materiale per un altro articolo che uscirà nelle prossime settimane.
This Post Has 0 Comments